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Abstract. Some types of bacteria use rotating helical flagella to swim. The motion of such organisms takes
place in the regime of low Reynolds numbers where viscous effects dominate and where the dynamics is
governed by hydrodynamic interactions. Typically, rotating flagella form bundles, which means that their
rotation is synchronized. The aim of this study is to investigate whether hydrodynamic interactions can
be at the origin of such a bundling and synchronization. We consider two stiff helices that are modelled
by rigidly connected beads, neglecting any elastic deformations. They are driven by constant and equal
torques, and they are fixed in space by anchoring their terminal beads in harmonic traps. We observe that,
for finite trap strength, hydrodynamic interactions do indeed synchronize the helix rotations. The speed
of phase synchronization decreases with increasing trap stiffness. In the limit of infinite trap stiffness, the
speed is zero and the helices do not synchronize.

PACS. 05.45.Xt Synchronization; coupled oscillations – 47.15.Gf Low-Reynolds-number (creeping) flows
– 82.70.Dd Colloids – 87.16.Qp Pseudopods, lamellipods, cilia, and flagella – 87.19.St Movement and
locomotion

1 Introduction

Many types of bacteria, such as certain strains of Es-
cherichia coli or Salmonella typhimurium, swim by rotat-
ing flagellar filaments, which are several micrometers long
and about 20 nm in diameter (the size of the cell body
is about 1 µm) [1–5]. The complete flagellum consists of
three parts: the basal body which is a reversible rotary
motor embedded in the cell wall, the helical filament that
acts as propellor, and in-between a short flexible coupling
called the proximal hook [2–5]. The motor is powered by
protons moving down an electrochemical gradient [2,4,5],
which generates a constant torque independent of the dy-
namic load [4,6]. The rotation rates for the flagella of
freely moving bacteria are of the order of 100 Hz [3–5].
The filaments are polymers with high flexural and tor-
sional stiffness [2,4,5]. However, they are flexible enough
to switch between different helical forms with distinct cur-
vature and twist [3–5].

Typically, the filaments rotate in synchrony, i.e., the
helices are locked in phase so that they can form bundles.
As a result, the cell is propelled at swimming speeds of
about 30 µm/s [1,3,5]. The process of bundling of nearby
rotating “filaments” was studied in detail in macroscopic-
scale experiments [7,8]. The cell tumbles and changes its
direction of swimming randomly when one or more of the
flagellar motors reverses its direction which forces the flag-
ellar filaments to leave the bundle. In addition, a sequence
of changes in the filament’s handedness and pitch occurs
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[3–5,9]. Hence, the overall movement of a bacterium is the
result of altering intervals of tumbling and straight swim-
ming. Chemotaxis steers the bacterium by just regulating
the tumbling frequency so that the net motion heads for
a more favorable food environment [4,5].

For an object with a characteristic linear dimension
a moving with velocity v through a Newtonian fluid, the
ratio of inertial to viscous forces is given by the Reynolds
number Re = avρ/η, where ρ is the fluid density and η
the viscosity [10,11]. Therefore, at low Reynolds numbers
(Re ≪ 1), inertia does not play an important role, and
the thrust on the object results solely from viscous drag.
Swimming microorganisms in water are moving at very
low Reynolds numbers [10]. E. coli bacteria, e.g., have a
cell body of size a ≈ 1µm and move with velocities of the
order of v ≈ 10µm/s, which yields Re ≈ 10−5. Thus, the
locomotion of microorganisms is fundamentally different
from propulsion mechanisms in the macroscopic world (for
comparison, a dolphin moves at Re ≈ 107).

At low Reynolds numbers, the relative motion of two
objects is governed by long-range hydrodynamic interac-
tions which, to leading order, fall off with their inverse dis-
tance [11]. They are also important in biological systems.
Having in mind the propulsion mechanism of spermatozoa,
Taylor modeled the hydrodynamics of two neighboring un-
dulating tails, and found that hydrodynamic interactions
synchronize the phases of lateral waves traveling down the
tails [12]. Furthermore, the coordinated motion or stroke
of beating cilia (known as metachronism) is believed to
be mediated by hydrodynamic coupling [13–15]. In both
cases, it is observed that the overall friction in the sys-
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Fig. 1. Visualization of the helix geometry used in the sim-
ulations (here with a phase difference of π/2). (a) All beads
of one helix are connected ridigly with each other. (b) For the
sake of clarity, the beads are “smeared” out along the helix.
The top and bottom beads are anchored in harmonic traps.
The illustrated helices are in their equilibrium positions.

tem is reduced by synchronization [12,15]. In analogy to
these examples, it was suggested that hydrodynamic in-
teractions may also play an important role in how flagellar
filaments synchronize their rotational motion so that they
can form bundles [1].

In a recent paper, Kim and Powers studied hydrody-
namic interactions between two rotating helices within the
framework of slender-body theory [16]. The helices were
considered as rigid and prevented from translation by ex-
ternal forces, so that their axes were always parallel. The
key result of this work was that there is no phase synchro-
nization in this setup, when the two helices are driven with
the same torque.

In this paper, we consider a model which also consists
of two stiff helices, thus neglecting any effects of elas-
tic deformations. The helices are modeled by single beads
that are rigidly connected to each other and are driven
by constant and equal torques. In contrast to Ref. [16],
we “fix” the helices in space by anchoring their terminal
beads in harmonic traps. This allows for slight shifts and
tilts of the helices and thus implies some kind of flexibility,
which is the major difference to Ref. [16]. In the following,
we show that the phases of the rotating helices do indeed
synchronize in this setup, and that the state of zero phase
difference possesses lowest friction.

The model is introduced in detail in Sec. 2. Then, sym-
metry properties of the dynamic quantities are derived in
Sec. 3. The numerical simulations of the helix dynamics
are presented in detail in Sec. 4, where we analyze the
data for phase synchronization, in particular with respect
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Fig. 2. The helix axis αi is
tilted by the angle θi against
the z direction. The projection
of the phase vector βi into the
xy plane yields the phase angle
φi, where φi = 0 lies in the xz
plane.

to the anchoring strength of the terminal beads. Finally,
we conclude in Sec. 5 discussing the role of the harmonic
traps and the flexibility which they create.

2 Model

We consider two identical helices built of equal-sized beads
[Fig. 1(a)] that are connected with each other by (virtual)
rigid bonds. Thus, the helices cannot deform elastically.
The centers of the beads are aligned along the backbone of
the helix, with equal distances between successive beads.

To describe the dynamics of the helices, we introduce
body-fixed coordinate axes, given by the orthonormal vec-
tors αi, βi, and αi × βi (i = 1, 2). The axis of a helix is
represented by αi, and the orientation of the perpendic-
ular vector βi shall describe the phase of the helix, i.e.,
the rotation about its own axis [Fig. 1(b)]. We define the
phase angles φi by the projection of βi into the xy plane
(Fig. 2). The angle between αi and the z axis is the tilt
angle θi.

The centers of mass of the helices are denoted by xi.
The positions of the individual beads are then given by

x̄ν
i = xi + ξν

1
αi + ξν

2
βi + ξν

3
αi × βi (1)

with the internal coordinates

ξν
1

=
h

m

(

ν −
nm − 1

2

)

,

ξν
2 = r cos

2π

m
ν , ξν

3 = r sin
2π

m
ν ,

(2)

where r is the radius of the helix and h its pitch. The
bead index ν runs from 0 to nm−1 for each helix, with m
being the number of beads per winding and n the number
of windings.

The helices are driven by constant and equal torques
that are always parallel to the respective helix axis, i.e.,
the torques are given by Dαi with a fixed parameter D.
Note that the assumption of a constant torque agrees with
experimental studies of real flagellar motors [4,6], as we
have already mentioned in our introductory remarks. To
“fix” the helices in space, we attach single beads at the
top and bottom end of each helix axis (Fig. 1) and anchor
them in harmonic traps with equal force constants K. In
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Fig. 3. Rotation of the two-helix
system by 180◦ about the z axis (a)
and about the x axis (b). The circu-
lar arrows (indexed with i = 1, 2) on
top of the helices denote that the re-
spective helix is driven with torque
Ti and rotates with velocity ωi in
the indicated direction. The tubes
are drawn as guide to the eye.

equilibrium, both helix axes are parallel, and their center-
to-center distance is S. If one of the anchoring beads is
displaced by ∆x̄σ

i (where the index σ refers to “top” or
“bottom”) relative to the center of the respective har-
monic trap, the restoring single-particle force is

F̄
σ
i = −K∆x̄σ

i . (3)

Finally, the total center-of-mass forces and torques acting
on the rigid helices are

F i =
∑

σ
F̄

σ
i (with σ = top, bottom) ,

T i = Dαi +
∑

σ
(x̄σ

i − xi) × F̄
σ
i .

(4)

In the regime of low Reynolds numbers, the flow of
an incompressible fluid with viscosity η obeys the quasi-
static Stokes or creeping flow equations η∇2u − ∇p = 0

and ∇ · u = 0 [11,17], where u is the flow field and p the
hydrodynamic pressure. We assume the flow to vanish at
infinity and impose stick boundary conditions on the sur-
faces of all particles suspended in the fluid. The resulting
flow field then couples the motion of the particles to each
other. Due to the linearity of the Stokes equations, their
translational and rotational velocities, vi and ωi, depend
linearly on all external forces and torques, F j and T j [11,
17]:

vi =
∑

j

µtt

ijF j +
∑

j

µtr

ijT j ,

ωi =
∑

j

µrt

ijF j +
∑

j

µrr

ijT j .
(5)

Each of the mobilities µtt

ij , µtr

ij , µrt

ij , and µrr

ij is a 3 × 3

tensor, which couples the translations (superscript t) and
rotations (superscript r) of particles i and j. They depend
on the current spatial configuration of all suspended parti-
cles. Since this dependence is highly nonlinear, they have
to be calculated numerically.

In our simulations, we use the numerical library hy-

drolib [18] which yields the full set of mobility tensors
for a given configuration of equal-sized spherical particles
(based on the multipole expansion method). It implicitly
accounts for (virtual) rigid bonds that keep the relative
positions of the single beads in a rigid cluster fixed. Thus,
hydrolib calculates an effective mobility matrix for the
coupled center-of-mass translations and rotations, i.e., the
indices i and j in Eq. (5) now refer to rigid clusters instead
of individual beads (for details, see Ref. [18]).

Therefore, with the forces and torques given in Eq. (4),
we directly obtain the linear and angular velocities of the
helices. The translational motion of the centers of mass is
then governed by

ẋi = vi , (6)

where the dot means time derivative. The rotational mo-
tion of the helix axes αi and the phase vectors βi follows
from

α̇i = ωi × αi ,

β̇i = ωi × βi .
(7)

We integrate these equations in time by applying a second-
order Runge-Kutta scheme (also known as Heun algo-
rithm) [19]. Note that the mobility matrices have to be
evaluated at each time step since the positions and orien-
tations of the helices change.

While the trap constant K was varied to study the
influence of the anchoring strength on the helix dynamics,
the driving torque D was kept fixed since it merely sets
the time scale (given by the rotational frequency ω0 of an
isolated helix). The time steps of the numerical integration
where chosen such that they correspond to a helix turn of
about 1◦.

The geometry of the two helices is shown in Fig. 1.
Their backbones have a radius of r = 2.0a and a pitch
of h = 6.0a, where a is the bead radius. The number of
windings is n = 3, and the number of beads per winding
is m = 5. The distance between the anchoring beads and
the helix is the same as the pitch h. The equilibrium sep-
aration of the helices, i.e., the distance of the upper/lower
anchoring traps, is S = 7.0a. Note that the calculation of
the mobility matrix is the most time consuming part in
the simulations. Therefore, we had to restrict the number
of beads in one helix. Furthermore, we will only present
results for the set of parameters just introduced and con-
centrate on the essential variable, namely the trap stiffness
K.

3 Symmetry considerations

Consider for the moment two helices whose axes are com-
pletely fixed in space, i.e., translation and tilt are pre-
vented by appropriate forces and torques. In this case,
the only remaining degrees of freedom are rotations about
the axes of the helices. They are described by the phase
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Fig. 4. Synchronization of the helix rotations. The phase dif-
ference of the two helices tends towards zero, starting from χ
slightly smaller than π. The symbols are simulation data at
two different trap strengths (values of K in units of D/a). For
clarity, not every data point is plotted. The solid line shows
the master curve of Eq. (11). The insets enlarge the small os-
cillations at χ ≈ 0 and π (here for the case K = 0.1 D/a, but
the amplitudes do not depend strongly on K). Note that the
scaling of the two insets is the same.

angles φi and the angular velocities φ̇i = ωi. The helices
are driven by the same torques Ti = D about their axes.
We introduce the phase difference χ = φ2 −φ1 and define
the synchronization rate χ̇ = χ̇(φ1, φ2) for which we now
derive two essential features just on the basis of simple
symmetry arguments.

The dynamics of the two-helix system must not change
under arbitrary rotations of the whole geometry. If we
rotate it, e.g., by 180◦ about the z axis, as illustrated
in Fig. 3(a), the velocities of the left and right helix are
exchanged, i.e., ω1 ↔ ω2 and thus χ̇ → −χ̇. On the other
hand, the phase angles of the new left and right helix are,
respectively, φ2+π and φ1+π. Combining both statements
yields

χ̇(φ2 + π, φ1 + π) = −χ̇(φ1, φ2) . (8)

If the phases of the helices differ by π (φ2 = φ1 + π), one
obtains χ̇(φ1, φ1 + π) = −χ̇(φ1, φ1 + π) or

χ̇ = 0 for χ = π , (9)

i.e., the synchronization speed vanishes.
Let us now rotate the two-helix system by 180◦ about

the x axis [Fig. 3(b)]. Then the velocities of the left and
right helix are exchanged and reversed, i.e., ω1 ↔ −ω2,
and the synchronization speed χ̇ stays the same. On the
other hand, the angles transform as φ1 ↔ −φ2, and the
torques are reversed which also reverses χ̇, so that as a
total one obtains

−χ̇(−φ2,−φ1) = χ̇(φ1, φ2) . (10)

For helices of infinite length, the dynamics can only de-
pend on the phase difference χ and not on the single
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Fig. 5. Mean rotational velocities, averaged over one revolu-
tion (in units of the rotational frequency ω0 of an isolated he-
lix). The oscillations about the mean value are of the order of a
few percent, they decrease slightly during the synchronization
process. The example shown is for trap strength K = 0.3 D/a.

phases φi. This is obvious since a phase shift of both he-
lices is equivalent to a translation along the helix axes,
which does not change the dynamics. Therefore, Eq. (10)
reads χ̇(χ) = −χ̇(χ), i.e., for parallel helices of infinite
length the synchronization rate vanishes for any phase dif-
ference χ and, therefore, they do not synchronize towards
χ = 0.

4 Synchronization

We now study the rotational dynamics of two helices whose
terminal beads are anchored in harmonic traps of finite
strength, as introduced in Sec. 2. Thus, the helices can
be shifted and tilted, and their axes undergo a precession-
like motion while each helix itself is rotating about its
respective axis. The orientations of the helices in space
are described by the vectors αi and βi [see Fig. 1(b)] and
the corresponding angles θi and φi, as defined in Fig. 2.

Figure 4 shows the phase difference χ = φ2−φ1 for two
trap stiffnesses K as a function of a reduced time τ(K), to
be defined below. Starting with χ slightly smaller than π,
the phase difference decreases continuously (with steepest
slope at χ = π/2) and finally approaches zero, i.e., the
two helices do indeed synchronize their phases. The simu-
lations reveal that the dynamics does not depend signifi-
cantly on the phases φi themselves, but is predominantly
determined by the phase difference χ. Note that this fea-
ture may be expected since the dynamics of parallel helices
of infinite length can only depend on χ as explained in
Sec. 3. To be concrete, we observe that the rotational ve-
locities φ̇i undergo oscillations of only about 1% around a
mean value during one rotational period. Therefore, start-
ing with different values for φi but the same value of χ
yields the same curve (except for differences in the small
oscillations illustrated in the insets of Fig. 4).
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indicate values extracted from simulations at different K. The
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The mean rotational velocities, averaged over one rota-
tional period, increase during the synchronization process
from about 0.92ω0 at χ ≈ π to about 0.95ω0 at χ ≈ 0
(Fig. 5). Thus, the hydrodynamic drag acting on the he-
lices is minimized during phase synchronization. Since the
torques are constant, the dissipation rate

∑

i T i · ωi is
maximized. This observations agrees with the interesting
fact that the Stokes equations can be derived from a vari-
ational principle where one searches for an extremum of
the dissipated energy

∫

σijAijd
3r (σij is the stress tensor

and Aij the symmetrized velocity gradient) under the con-
straint that the fluid is incompressible [20,21]. The pres-
sure enters via the Lagrange parameter associated with
the constraint.

In Sec. 3, we showed for fixed parallel helices, based
on pure symmetry arguments, that their synchronization
rate vanishes for a phase difference of χ = π [see Eq. (9)].
In that case, the two-helix configuration is symmetric with
respect to a rotation by 180◦ about the z axis [see Fig. 3(a)].
Our resasoning of Sec. 3 can be extended to the case of
non-parallel helix axes, as long as the same symmetry is
preserved. However, χ = π does not correspond to a stable
state. Starting with χ marginally smaller than π, the sys-
tem tends towards phase difference zero. The simulation
with K = 0.1 in Fig. 4 was launched, e.g., at χ = 0.994π
with both helices in equilibrium position and orientation.

On the other hand, the synchronized state χ = 0 is sta-
ble against small perturbations since configurations with
χ between 0 and −π synchronize towards zero phase differ-
ence, too. This was checked by simulations, but can also
be derived from Eq. (8). The corresponding rotation of
Fig. 3(a) creates new left and right helices with a change
in sign for χ and χ̇ relative to the original helices which
explains our statement. Furthermore, starting a simula-
tion with exactly χ = 0, the helices remain synchronized
on average (i.e., 〈χ〉 = 0), but there are still small oscil-
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lations as illustrated in the lower right inset in Fig. 4 for
the case where both helices started in equilibrium position
and orientation.

Averaging over small oscillations, we find that the re-
sulting smoothed curves for the phase difference χ obey
an empirical law of the form

χ(τ) =
π

2
(1 − tanh τ) , (11)

where

τ(K) =
2

π
(t − tπ/2)

∣

∣

∣

∣

dχ

dt

∣

∣

∣

∣

t=tπ/2

(12)

is the reduced time, already mentioned above, and tπ/2 de-
notes the time where χ = π/2, i.e., the location of the in-
flection point. Its slope |dχ/dt|t=tπ/2

depends on the trap
stiffness K and so does τ . As Fig. 4 strikingly reveals, this
law works very well. By plotting the phase difference χ
versus the reduced time τ(K), the curves collapse on the
master curve given by Eq. (11). Since the dynamics at low
Reynolds numbers is completely overdamped, we expect
this law to follow from a differential equation which is of
first order in time. Taking the first derivative of Eq. (11)
with respect to τ , we find that χ(τ) obeys the nonlin-
ear equation χ̇(τ) = (2/π)χ(τ)[π − χ(τ)], known as the
Verhulst equation and originally proposed to model the
development of a breeding population [22]. However, it is
not clear how to derive this equation from first principles
in our case.

An important result is that the speed of the synchro-
nization process decreases with increasing trap stiffness
K. The values plotted in Fig. 6 for different K−1 are the
slopes |dχ/dt|t=tπ/2

extracted from simulation data at the

inflection point with a relative phase of χ ≈ π/2. The



6 Michael Reichert, Holger Stark: Synchronization of rotating helices by hydrodynamic interactions

curve in Fig. 6 can be extrapolated by the analytic form
c1 tanh c2K

−1 (dashed curve), where the fit parameters
assume the values c1 = 3.67 · 10−3ω0 and c2 = 0.137 D/a.
In the limit of infinite trap strength, i.e., for K−1 → 0,
the synchronization speed clearly tends towards zero, i.e.,
an infinitely strong anchoring of the helix axes does not
allow for phase synchronization.

In Fig. 7, we illustrate how the tilt angles θi (for their
definition, see Fig. 2) vary during the synchronization pro-
cess. The mean tilt angle as well as the amplitude of its
periodic oscillations decrease when the phase difference
approaches zero. Obviously, the dynamics of the helices
depends on the stiffness of the harmonic anchoring of the
top and bottom terminal beads. In a weaker trap, the tilt
of the helix axes out of equilibrium is more pronounced
compared to a stronger trap. The insets in Fig. 7 track
the precession-like motions of the helix axes. The stronger
the trap, the smaller the radius of the “orbit” or the tilt
angle. [Since the simulations were started with both axes
aligned along their equilibrium direction, the trajectories
(αix, αiy) first move radially away from the origin and then
enter the “precession orbit”.]

At the end, we mention that all results presented here
refer to helices whose rotational direction is given in Fig.
1(b). Reversing the direction of rotation does not change
the dynamics of the two-helix system since this can also
be achieved by the operation shown in Fig. 3(b) that does
not change the synchronization speed.

5 Conclusions

We have reported that two rigid helices whose terminal
beads are anchored in harmonic traps synchronize to zero
phase difference. Increasing the stiffness of the anchoring
traps, decreases the synchronization rate. We attribute
this to the jiggling motion of the two helix axes which is
more and more restrained.

In the limit of infinite trap strength, our results are
consistent with recent work based on slender-body the-
ory for two rigid helices [16]. If the helices are prevented
from translation and their axes are always kept parallel,
then there is no synchronization possible. Therefore, we
conclude that the additional degree of freedom due to the
finite anchoring of the helix axis, i.e., the jiggling motion,
is essential to enable phase synchronization in our model.

At a first glance, our model might appear too artifi-
cial for describing the hydrodynamic coupling of flagella.
However, our results clearly indicate that some kind of
flexibility is essential to allow for phase synchronization.
In reality, this flexibility might have its origin in elastic
deformations of the rotating flagella. Therefore, the next
step would be to make the flexural and torsional stiffness
of the helices in our model finite.

We also checked whether it is important if the helices
are kept at a fixed position are kept at their place or if they
are allowed to propel themselves. This was done by letting
the helices move along the z axis but still keeping them in
harmonic traps along the x and y direction. However, we
did not see a significant difference in the dynamics of the

synchronization process compared to the results presented
in this work.

As a final remark, we point out that the following gen-
eral mechanism may exist in systems of low Reynolds num-
bers: Synchronizing the motions of some objects via hy-
drodynamic interactions needs some kind of “flexibility”.
If the motions of the objects are constrained too much,
synchronization cannot occur. We have observed a simi-
lar behavior for particles circling in a toroidal harmonic
trap and driven by a constant tangential force [23]. After
some transition regime, the particles reach a synchronized
state where they perform a periodic limit cycle. We ob-
serve that for increasing trap stiffness, i.e., for decreasing
oscillations along the radial direction, the time to reach
this limit cycle increases.

This work was supported by the Deutsche Forschungsgemein-
schaft through Sonderforschungsbereich Transregio 6 “Physics
of colloidal dispersions in external fields”. H.S. acknowledges
financial support from the Deutsche Forschungsgemeinschaft
by Grant No. Sta 352/5-1.
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